UNIVERSITY OF MADRAS

MASTER OF COMPUTER APPLICATIONS (MCA) DEGREE PROGRAMME SYLLABUS WITH EFFECT FROM 2023-2024

Title of the Paper	High Performance Computing				
Elective- VI Theory	II Year & IV Semester	Credit:3	535E4B		

Course Objectives:

- To get a clear idea of High Performance Computing concept.
- To get brief knowledge about how to function the HPC systems.
- To get idea of what techniques used in HPC models.
- To understand a Parallel computing concepts.
- To get familiar with OpenMP technology that is widely used in HPC technology.

Unit I: Modern processors: Stored-program computer architecture-General purpose cache based microprocessor architecture-Memory hierarchies-Multicore processors-Multithreaded processors-Vector processors. Basic optimization techniques for serial code: Scalar profiling-Common sense optimizations-Simple measures, large impact-The role of compilers-C++ optimizations.

Unit II: Data access optimization: Balance analysis and light speed estimates-Storage order-Algorithm classification and access optimizations-The Jacobi algorithm-Algorithm classification and access optimizations-Sparse matrix-vector multiply. Parallel computers: Taxonomy of parallel computing paradigms-Shared-memory computers-Distributed memory computers-Hierarchical systems-Networks.

Unit III: Basics of parallelization: Introduction to Parallelism -Parallel scalability. Shared memory parallel programming with OpenMP: Short introduction to OpenMP-OpenMP-parallel Jacobi algorithm.

Unit IV: Efficient OpenMP programming: Profiling OpenMP programs-Performance pitfalls-Parallel sparse matrix-vector multiply. Locality optimizations on ccNUMA architectures: Locality of access on ccNUMA-ccNUMA optimization of sparse MVM-Placement pitfalls-ccNUMA issues with C++.

Unit V: Distributed-memory parallel programming with MPI: Message passing-A short introduction to MPI-MPI parallelization of a Jacobi solver. Efficient MPI programming: MPI performance tools-Communication parameters-Synchronization, serialization, contention-Reducing communication overhead-Understanding intranode point-to-point communication.

UNIVERSITY OF MADRAS

MASTER OF COMPUTER APPLICATIONS (MCA) DEGREE PROGRAMME SYLLABUS WITH EFFECT FROM 2023-2024

Text book:

1. Georg Hager, Gerhard Wellein "Introduction to High Performance Computing for Scientists and Engineers", CRC Press, 2011. Chapters: 1 to 10.

Reference books:

- 1. Michael W. Berry, Kyle A. Gallivan, EfstratiosGallopoulos, Ananth Grama, Bernard Philippe, Yousef Saad, Faisal Saied, "High-performance scientific computing: algorithms and applications", Springer, 2012.
- **2.** Victor Eijkhout, "Introduction to High Performance Scientific Computing", MIT Press, 2011.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand of the HPC and ccNUMA concepts	K1-K6
CO2	Design and develop a parallel programming with modern C, C++ and new version of FORTRAN	K1-K6
CO3	Apply with parallel computing	K1-K6
CO4	Develop an efficient OpenMP programming	K1-K6
CO5	Evaluate an efficient MPI programming	K1-K6

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5 Evaluate, K6- Create

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	L	M	L	L	L	S	S	S	S
CO2	S	M	L	M	M	L	S	L	S	L
CO3	S	S	S	M	M	L	M	L	M	L
CO4	S	S	S	M	S	L	M	L	M	S
CO5	S	S	S	M	M	L	M	M	M	M

S- Strong; M-Medium; L-Low