UNIVERSITY OF MADRAS MASTER OF COMPUTER APPLICATIONS (MCA) DEGREE PROGRAMME SYLLABUS WITH EFFECT FROM 2023-2024

Title of the Paper	Operating Systems and UNIX				
Elective - I Theory	I Year & I Semester	Credit:3	435E1C		

Course Objectives:

- To understand the basic concepts and functions of operating systems
- To understand Processes and Threads
- To analyze Scheduling algorithms.
- To understand the concept of Deadlocks.
- To analyze various memory management schemes.
- To understand I/O management and File systems.
- To provide a comprehensive introduction to UNIX operating system and shell programming.

OUTCOMES

At the end of the course, the students should be able to:

- Analyze various scheduling algorithms.
- Understand deadlock, prevention and avoidance algorithms.
- Compare and contrast various memory management schemes.
- Understand the functionality of file systems.

Unit 1: Defining a Operating System - Clustered Systems - Operating-System Structure - Operating-System Operations - Process Management - Memory Management - Storage Management - Protection and Security- Computing Environments - Open-Source Operating Systems - Operating system services - System Calls- Types of System Calls - System Programs - Operating-System Structure - System Boot.

Unit-2: Process Management: Process concept – Process Scheduling - Operations on Processes -Interprocess Communication - Communication in Client – Server Systems -Threads – Multithreading Models - Basic Concepts – Scheduling Criteria – Scheduling Algorithms - Process Synchronization -Critical section Problem - Peterson s Solution -Synchronization hardware – Semaphores, classical problem of synchronization – System model - Deadlock Characterization - Methods for Handling Deadlocks -Prevention, Avoidance, and Detection – Recovery.

Unit 3: Storage management – Background- Swapping - Contiguous Memory Allocation - Paging -Structure of the Page Table - Segmentation - virtual memory background - demand paging - Copy-on-Write- page replacement and algorithms

Unit 4: Storage management – File system - File concept - access methods - directory and directory structure - protection - File-System Structure - File-System Implementation - Directory Implementation -Allocation Methods - Free-Space Management - Secondary Storage structure - disk structure – disk attachment - Disk scheduling

UNIVERSITY OF MADRAS

MASTER OF COMPUTER APPLICATIONS (MCA) DEGREE PROGRAMME SYLLABUS WITH EFFECT FROM 2023-2024

Unit 5: Introduction to Unix and Unix commands. Introduction of sed, awk and grep family Shell Scripting: Introduction to Shell, Types of Shell, C shell features, writing first script writing script, Executing & Debugging script.

Shell Programming: Shell variables, Output, Input, exit Status of a Command, Branching Control Structures, Loop-Control Structure, and Continue and break Statements, Expressions, Command Substitution, Command Line Arguments and Functions.

TEXT BOOK:

1. Operating System Concepts – Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, 8th edition, Wiley-India, 2009.

- 2. Modern Operating Systems Andrew S. Tanenbaum, 3rd Edition, PHI
- 3. Operating Systems: A Spiral Approach Elmasri, Carrick, Levine, TMH Edition
- 4. Unix Shell Programming : Yashavant P. Kanetkar, BPB Publications.

REFERENCE BOOK:

- 1. Operating Systems Flynn, McHoes, Cengage Learning
- 2. Operating Systems Pabitra Pal Choudhury, PHI
- 3. Operating Systems William Stallings, Prentice Hall
- 4. Operating Systems H.M. Deitel, P. J. Deitel, D. R. Choffnes, 3rd Edition, Pearson
- 5. Introduction to Unix & Shell -Venkatesh Murthy, Pearson Edu.
- 6. Unix& Shell Programming Forouzan, Cengage Learning.

E-Resources:

https://applied-programming.github.io/Operating-Systems-Notes/

https://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system

Course Outcomes

On the successful completion of the course, students will be able

CO1	Analyze various scheduling algorithms.		
CO2	Understand deadlock, prevention and avoidance algorithms.	K1-K6	
CO3	Compare and contrast various memory management schemes.	K1-K6	
CO4	Understand the functionality of file systems.	K1-K6	
CO5	To comprehend, use and illustrate the advance concepts such as alternate shell script, data connectivity and bash scripting	K1-K6	

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

Mapping with Programme Outcome:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	М	L	S	М	L	М	S	L
CO2	S	М	S	М	S	М	М	L	М	L
CO3	М	S	М	S	М	S	L	L	L	М
CO4	S	L	М	М	S	L	L	М	М	S
CO5	S	S	М	S	L	S	М	L	М	L
. n. r		A 11	T T							

S-Strong

M-Medium L-Low